Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, n__filter3(activate1(Y), M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, n__filter3(activate1(Y), N, M))
sieve1(cons2(0, Y)) -> cons2(0, n__sieve1(activate1(Y)))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), n__sieve1(n__filter3(activate1(Y), N, N)))
nats1(N) -> cons2(N, n__nats1(n__s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
filter3(X1, X2, X3) -> n__filter3(X1, X2, X3)
sieve1(X) -> n__sieve1(X)
nats1(X) -> n__nats1(X)
s1(X) -> n__s1(X)
activate1(n__filter3(X1, X2, X3)) -> filter3(activate1(X1), activate1(X2), activate1(X3))
activate1(n__sieve1(X)) -> sieve1(activate1(X))
activate1(n__nats1(X)) -> nats1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, n__filter3(activate1(Y), M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, n__filter3(activate1(Y), N, M))
sieve1(cons2(0, Y)) -> cons2(0, n__sieve1(activate1(Y)))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), n__sieve1(n__filter3(activate1(Y), N, N)))
nats1(N) -> cons2(N, n__nats1(n__s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
filter3(X1, X2, X3) -> n__filter3(X1, X2, X3)
sieve1(X) -> n__sieve1(X)
nats1(X) -> n__nats1(X)
s1(X) -> n__s1(X)
activate1(n__filter3(X1, X2, X3)) -> filter3(activate1(X1), activate1(X2), activate1(X3))
activate1(n__sieve1(X)) -> sieve1(activate1(X))
activate1(n__nats1(X)) -> nats1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__filter3(X1, X2, X3)) -> ACTIVATE1(X3)
SIEVE1(cons2(s1(N), Y)) -> ACTIVATE1(Y)
FILTER3(cons2(X, Y), s1(N), M) -> ACTIVATE1(Y)
ZPRIMES -> SIEVE1(nats1(s1(s1(0))))
ACTIVATE1(n__nats1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__nats1(X)) -> NATS1(activate1(X))
ACTIVATE1(n__filter3(X1, X2, X3)) -> ACTIVATE1(X1)
FILTER3(cons2(X, Y), 0, M) -> ACTIVATE1(Y)
ZPRIMES -> S1(0)
ACTIVATE1(n__filter3(X1, X2, X3)) -> ACTIVATE1(X2)
ZPRIMES -> S1(s1(0))
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
SIEVE1(cons2(0, Y)) -> ACTIVATE1(Y)
ACTIVATE1(n__filter3(X1, X2, X3)) -> FILTER3(activate1(X1), activate1(X2), activate1(X3))
ACTIVATE1(n__sieve1(X)) -> ACTIVATE1(X)
ZPRIMES -> NATS1(s1(s1(0)))
ACTIVATE1(n__sieve1(X)) -> SIEVE1(activate1(X))
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, n__filter3(activate1(Y), M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, n__filter3(activate1(Y), N, M))
sieve1(cons2(0, Y)) -> cons2(0, n__sieve1(activate1(Y)))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), n__sieve1(n__filter3(activate1(Y), N, N)))
nats1(N) -> cons2(N, n__nats1(n__s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
filter3(X1, X2, X3) -> n__filter3(X1, X2, X3)
sieve1(X) -> n__sieve1(X)
nats1(X) -> n__nats1(X)
s1(X) -> n__s1(X)
activate1(n__filter3(X1, X2, X3)) -> filter3(activate1(X1), activate1(X2), activate1(X3))
activate1(n__sieve1(X)) -> sieve1(activate1(X))
activate1(n__nats1(X)) -> nats1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__filter3(X1, X2, X3)) -> ACTIVATE1(X3)
SIEVE1(cons2(s1(N), Y)) -> ACTIVATE1(Y)
FILTER3(cons2(X, Y), s1(N), M) -> ACTIVATE1(Y)
ZPRIMES -> SIEVE1(nats1(s1(s1(0))))
ACTIVATE1(n__nats1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__nats1(X)) -> NATS1(activate1(X))
ACTIVATE1(n__filter3(X1, X2, X3)) -> ACTIVATE1(X1)
FILTER3(cons2(X, Y), 0, M) -> ACTIVATE1(Y)
ZPRIMES -> S1(0)
ACTIVATE1(n__filter3(X1, X2, X3)) -> ACTIVATE1(X2)
ZPRIMES -> S1(s1(0))
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
SIEVE1(cons2(0, Y)) -> ACTIVATE1(Y)
ACTIVATE1(n__filter3(X1, X2, X3)) -> FILTER3(activate1(X1), activate1(X2), activate1(X3))
ACTIVATE1(n__sieve1(X)) -> ACTIVATE1(X)
ZPRIMES -> NATS1(s1(s1(0)))
ACTIVATE1(n__sieve1(X)) -> SIEVE1(activate1(X))
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, n__filter3(activate1(Y), M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, n__filter3(activate1(Y), N, M))
sieve1(cons2(0, Y)) -> cons2(0, n__sieve1(activate1(Y)))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), n__sieve1(n__filter3(activate1(Y), N, N)))
nats1(N) -> cons2(N, n__nats1(n__s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
filter3(X1, X2, X3) -> n__filter3(X1, X2, X3)
sieve1(X) -> n__sieve1(X)
nats1(X) -> n__nats1(X)
s1(X) -> n__s1(X)
activate1(n__filter3(X1, X2, X3)) -> filter3(activate1(X1), activate1(X2), activate1(X3))
activate1(n__sieve1(X)) -> sieve1(activate1(X))
activate1(n__nats1(X)) -> nats1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 6 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__filter3(X1, X2, X3)) -> ACTIVATE1(X3)
SIEVE1(cons2(s1(N), Y)) -> ACTIVATE1(Y)
FILTER3(cons2(X, Y), s1(N), M) -> ACTIVATE1(Y)
SIEVE1(cons2(0, Y)) -> ACTIVATE1(Y)
ACTIVATE1(n__filter3(X1, X2, X3)) -> FILTER3(activate1(X1), activate1(X2), activate1(X3))
ACTIVATE1(n__nats1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__sieve1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__filter3(X1, X2, X3)) -> ACTIVATE1(X1)
FILTER3(cons2(X, Y), 0, M) -> ACTIVATE1(Y)
ACTIVATE1(n__filter3(X1, X2, X3)) -> ACTIVATE1(X2)
ACTIVATE1(n__sieve1(X)) -> SIEVE1(activate1(X))
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, n__filter3(activate1(Y), M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, n__filter3(activate1(Y), N, M))
sieve1(cons2(0, Y)) -> cons2(0, n__sieve1(activate1(Y)))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), n__sieve1(n__filter3(activate1(Y), N, N)))
nats1(N) -> cons2(N, n__nats1(n__s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
filter3(X1, X2, X3) -> n__filter3(X1, X2, X3)
sieve1(X) -> n__sieve1(X)
nats1(X) -> n__nats1(X)
s1(X) -> n__s1(X)
activate1(n__filter3(X1, X2, X3)) -> filter3(activate1(X1), activate1(X2), activate1(X3))
activate1(n__sieve1(X)) -> sieve1(activate1(X))
activate1(n__nats1(X)) -> nats1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.